Research
Research
News Center
Information
About Us
Research
News Center
Information
Microplastics floating in water, caught by floating drones
Microplastics floating in water, caught by floating drones - Hydrophilic tooth technology develops microplastic recovery technology using floating drones - Expected to be expanded to aquaculture farms, domestic water treatment, etc In recent years, microplastics have garnered significant attention due to their detection in tap and bottled water, as well as in rivers, lakes, and oceans. Conventional filtering technologies for water treatment have difficulty effectively filtering out microplastics of various sizes and shapes and are prone to clogging. Additionally, recovering small particles requires extremely fine filter meshes, which increases pressure and drastically reduces filter efficiency. Furthermore, they are not effective in open spaces such as lakes, rivers, or oceans, where microplastic pollution is increasing. Dr. Seong Jin Kim and Myoung-Woon Moon of the Center for Extreme Materials Research at the Korea Institute of Science and Technology (KIST) have developed a new level of microplastic removal technology, offering a promising solution to this growing problem. They have developed a floating drone equipped with hydrophilic tooth structures that leverage surface tension to skim microplastics. The core of the team's approach is the hydrophilic ratchet structure. This design forms a water bridge that forms between the teeth due to its affinity for water, which maximizes the surface tension of the water to adhere the microplastics to the teeth. This approach enables the removal of microplastics ranging in size from 1 micrometer (μm) to 4 millimeters, addressing the challenges traditional filtering technologies face with size and shape variability. It also ensures reliable operation without the risk of clogging. The technology has achieved over 80% recovery efficiency for various types of microplastics, including expanded polystyrene, polypropylene, and polyethylene. In particular, the hydrophilic ratchet structure of the floating drone can be used to remove microplastics in real-time in large bodies of water such as oceans, lakes, and rivers. The drone can move autonomously and purify water quality like a household robot vacuum cleaner, showing its versatility beyond the limitations of existing fixed systems "This technology can be applied not only to floating drones, but also to stationary systems such as water treatment filters in aquaculture farms," said Dr. Moon. "It can also be expanded into a home water treatment filter device that individuals can use in their daily lives." ### KIST was established in 1966 as the first government-funded research institute in Korea. KIST now strives to solve national and social challenges and secure growth engines through leading and innovative research. For more information, please visit KIST’s website at https://eng.kist.re.kr/ This research was supported by the Ministry of Science and ICT (Minister Yoo Sang-im) under the KIST Institutional Program and the Korea International Maritime Police Service Project (KIMST-20210584). The results of this research were published in the latest issue of the international journal "Advanced science" (IF 14.3, JCR field 8.2%). [Figure 1] [Figure 2] [Figure 3]
2024 - 12 - 16
Developing wastewater treatment units that treat right where it's generated
Developing wastewater treatment units that treat right where it's generated - Continuous flow rapidly breaks down and mineralizes organic matter in water, ready for immediate discharge - Unit produces its own hydrogen peroxide in large quantities and uses it as an oxidant right on site Conventional wastewater treatment involves the centralized collection of wastewater from sources through pipes to large-scale treatment plants, where it is treated in bulk. However, this is not feasible in small, decentralized areas such as rural areas. Simple treatment units installed at small non-point sources of pollution mainly focus on disinfection and turbidity improvement, and do not properly decompose the recalcitrant organic matter in wastewater. In addition, even if industrial wastewater is treated in-house, the treatment efficiency is low, and highly toxic wastewater often needs to be re-transported to a final treatment plant. Dr. Sang Hoon Kim, Extreme Materials Research Center, Dr. Jong Min Kim, Materials Architecturing Research Center, and Dr. Sang Soo Han, Computation Science Research Center, all from the Korea Institute of Science and Technology (KIST), have developed an electrochemical device that can treat sewage and wastewater from pollution sites to the level of discharge. In particular, it can rapidly and completely decompose recalcitrant materials into inorganic substances and discharge them on its own. While previous research methods mainly focused on the development of electrode materials for the generation of hydrogen peroxide, a powerful electrochemical oxidant, this study introduced a flow cell method to generate a large amount of hydrogen peroxide while circulating wastewater in the device, mixing it well, and oxidizing and decomposing recalcitrant organic matter in situ to rapidly mineralize it. This is a structure that can completely degrade organic matter much more efficiently than conventional treatment tanks. Conventional oxidation treatments for harmful organics in water often require multiple steps before the organics are completely degraded, and the intermediate products are often still toxic. When organic matter in water is completely decomposed and mineralized, it becomes non-toxic and can be discharged, and the indicator of this is called total organic carbon (TOC). Since last year, after 48 years, the Ministry of Environment has added total organic carbon to the wastewater discharge standards to impose stricter wastewater treatment standards. The small-scale electrochemical device developed by the KIST research team is a technology that can effectively treat sewage and wastewater directly on-site, which is difficult to treat centrally, and can effectively reduce the total organic carbon in a short time. In fact, the researchers demonstrated excellent complete decomposition performance, reducing the total organic carbon of 50pm bisphenol A by 93% in 2 hours. "The developed device is composed of a continuous and repetitive flow method, which shows higher complete decomposition efficiency than the existing method, and a patent is pending for the device and processing method. We are also planning to transfer the technology to commercialize it." ### KIST was established in 1966 as the first government-funded research institute in Korea. KIST now strives to solve national and social challenges and secure growth engines through leading and innovative research. For more information, please visit KIST’s website at https://eng.kist.re.kr/ This research was supported by the Ministry of Science and ICT (Minister Yoo Sang-im) under the KIST Institutional Program, Usu Shinjin (RS-2023-00209940), Nanomaterial Technology Development Project (NRF-2022M3H4A7046278), and the Ministry of Environment (Minister Han Hwa-jin) Environmental Technology Development Project (2021002800005). The research was published in the latest issue of the international journal Applied Catalysis B:Environment and Energy (IF: 20.2 JCR, top 0.6%) [Figure 1] [Figure 2] [Figure 3]
2024 - 12 - 09
Developing highly efficient recovery materials for precious 'rare earth metals' and improving resource circulation...
Developing highly efficient recovery materials for precious 'rare earth metals' and improving resource circulation for digital infrastructure - Recovery of rare earth metals from waste permanent magnets to reduce foreign dependence - Development of fibrous adsorption materials with improved performance, productivity, economy, and applicability, and improved industrial stability Korea imports 95% of its core minerals such as lithium, nickel, and rare earths. Rare earths, in particular, are characterized by chemical, electrical, magnetic, and luminescent properties that can be achieved by adding only a small amount, and their use has recently increased significantly as core materials in the eco-friendly automobile and renewable energy industries. China, a major producer of rare metals, is controlling the supply through its strategy of weaponizing resources, putting great pressure on the domestic industry. Dr. Jae-Woo Choi and his team at the Center for Water Cycle Research at the Korea Institute of Science and Technology (KIST) recently announced the development of a fiber-based recovery material that can recover rare earth metals such as neodymium (Nd) and dysprosium (Dy) with high efficiency. The new material is expected to contribute to solving rare earth supply and industrial stability issues by recovering and recycling rare earth metals (neodymium-iron-boron (Nd-Fe-B)) that are mainly used in third-generation permanent magnets, which are essential components in the electric vehicle, hybrid vehicle drive motors, wind power, robotics, and aerospace industries. KIST researchers have developed a nanostructured composite fiber material composed of metal-organic structures and polymer acryl fiber composite fibers to efficiently recover rare earth metals. The adsorptive material is based on acrylic fibers, which are already widely used in Korea, and is economical and productive. The researchers expect that the developed material will be of great industrial use as it easily adsorbs rare earths from waste liquids while facilitating their recovery. The developed fiber material showed adsorption capacities of 468.60 mg/g for neodymium and 435.13 mg/g for dysprosium, the highest in the world. This is significantly higher than conventional adsorption materials and can be applied to simple reactors, which can significantly improve the energy efficiency of the recovery process. The team expects the material to be able to effectively recover rare earths not only from waste permanent magnets, but also from a variety of industrial wastewaters containing rare earth metals, such as mine drainage. In particular, its easy surface modification makes it applicable to a wide range of industrial wastewaters, and it is expected to become a technological alternative for securing rare metal resources. "The high-efficiency rare earth metal recovery material developed in this study is a technology that can replace existing granular adsorption materials, showing excellent results in terms of performance, productivity, economy, and applicability, which will revitalize the digital infrastructure waste mineral extraction ecosystem, and has great potential for industrial application through resource recycling," said Dr. Jae-Woo Choi of KIST. "In the future, the technology can be expanded to selectively recover various useful resources, including rare earths, from industrial wastewater, contributing to carbon neutrality and rare earth-related upstream and downstream industries," said Dr. Youngkyun Jung. ### KIST was established in 1966 as the first government-funded research institute in Korea. KIST now strives to solve national and social challenges and secure growth engines through leading and innovative research. For more information, please visit KIST’s website at https://eng.kist.re.kr/ This research was supported by the Ministry of Science and ICT (Minister Yoo Sang-im) under the KIST Major Project, Leading Materials Innovation Project (2020M3H4A3106366) and Sejong Science Fellowship (RS-2023-00209565). The research results were published in the latest issue of the international journal Advanced Fiber Materials. [Figure 1] [Figure 2] [Figure 3]
2024 - 12 - 06
Developing new polymeric nanomaterials to detect harmful substances in extreme environments
Developing new polymeric nanomaterials to detect harmful substances in extreme environments - KIST-Yale team develops new nanomaterials based on mixed ion-electron conductors - Eco-friendly, durable sensors for high temperature and humidity environments are expected to have a wide range of applications Polymers have gained prominence in applications such as wearable electronics due to their flexibility and lightweight, but their low electrical conductivity has been a major drawback. While various research efforts have been made to improve conductivity, there are still technical limitations, such as the need to use harmful solvents and performance degradation in extreme environments. The Korea Institute of Science and Technology (KIST) announced that it has developed a method for synthesizing polymers based on ion-electron mixed conductors through collaborative research with Dr. Jang Ji-soo of KIST's Center for Electronic Materials Research and Professor Mingjiang Zhong of Yale University in the United States. The research overcomes the limitations of existing polymeric conductors and is attracting attention as an innovative technology that can contribute to the development of next-generation high-performance chemical sensors. To solve this problem, the researchers introduced ionic pendant groups into the polymer structure to synthesize conjugated polymers that can easily dissolve in eco-friendly solvents rather than toxic solvents. In particular, the polymers exhibit high gas sensing performance in eco-friendly processes and can maintain stable performance in high temperature and humidity environments. This technological advance opens up the possibility of applications in wearable devices, portable electronics, and other electronic devices that can operate reliably in extreme environments. At the center of this research is the development of an ionization-based conjugated polymer that is soluble in an environmentally friendly solvent (2-methylanisole). While conventional conductive polymers typically require toxic solvents to dissolve, the new polymer significantly improves electrical conductivity through the binding of ionic species and electronic charge carriers. By introducing anions (TFSI-) and cations (IM+) into the polymer to increase the density and mobility of the charge carriers, the team maximized conductivity and stability. The n-type based conductive polymer developed by the researchers, N-PBTBDTT, showed a very high sensitivity in detecting harmful gases such as nitrogen dioxide (NO2). The sensitivity for NO2 detection was as high as 189%, and it showed high detection ability even at a very low concentration of 2 ppb. This performance exceeds that of conventional sensor technologies, and the polymer was also highly durable in environments with high humidity of 80% and high temperatures of up to 200°C. This enables stable gas detection in a variety of extreme environments, and is expected to be widely applied to wearable devices and industrial sensors. "The sensors developed in this research go beyond simple chemical sensors and can bring about revolutionary changes in various applications," said Dr. Jang Ji-soo of KIST. "In particular, it can be used as a life-saving material for those who work in extreme environments, such as firefighters who need to detect harmful gases at fire scenes and soldiers who are exposed to chemical weapons in wartime," said Prof. Junwoo Lee and Dr. Juncheol Shin, first authors. ### KIST was established in 1966 as the first government-funded research institute in Korea. KIST now strives to solve national and social challenges and secure growth engines through leading and innovative research. For more information, please visit KIST’s website at https://eng.kist.re.kr/ This research was supported by the Ministry of Science and ICT (Minister Yoo Sang-im) as Institutional Program of KIST, and the results were published* in Advanced Functional Materials (IF: 18.5, within the top 5% of the JCR field), an authoritative journal in the field of energy materials. [Figure 1] [Figure 2] [Figure 3]
2024 - 11 - 25
개인정보처리방침
한국과학기술연구원은 정보주체의 동의, 「전자정부법」 및 「개인정보 보호법」 등 관련 법령상의 개인정보 보호 규정을 준수하여 이용자의 개인정보 보호 및 권익을 보호하고 개인정보와 관련한 이용자의 고충을 원활하게 처리할 수 있도록 다음과 같은 처리방침을 두고 있습니다.
제1조(개인정보의 처리목적, 항목, 보유 기간 등)한국과학기술연구원(이하 “연구원”)은 다음 각 호에서 열거한 목적을 위하여 최소한으로 개인정보를 처리하고 있습니다. 처리한 개인정보는 다음의 목적 이외의 용도로는 이용되지 않으며, 이용 목적이 변경되는 경우에는 「개인정보 보호법」 제18조에 따라 별도의 동의를 받는 등 필요한 조치를 이행하겠습니다.
제2조(개인정보의 처리 및 보유기간)연구원은 법령에 따른 개인정보 보유․이용기간 또는 정보주체로부터 개인정보를 수집시에 동의받은 개인정보 보유․이용기간 내에서 개인정보를 처리․보유합니다.
제3조(개인정보의 제3자 제공)연구원은 정보주체의 개인정보를 제1조(개인정보의 처리목적)에서 명시한 범위 내에서만 처리하며, 정보주체의 동의, 법률의 특별한 규정 등 개인정보보호법 제17조에 해당하는 경우에만 개인정보를 제3자에게 제공합니다.
제4조(개인정보처리의 위탁)연구원은 정보주체의 동의 없이 개인정보의 처리를 위탁하지 않습니다. 다만, 정보주체의 동의를 받아 개인정보 처리를 위탁하는 경우에는 다음 사항을 준수하겠습니다.
연구원은 민원사무 처리 및 각종 서비스 제공을 위해 개인정보의 처리를 하고 있습니다.
제7조(개인정보의 파기)쿠키의 설치∙운영 및 거부 : 웹브라우저 상단의 도구>인터넷 옵션>개인정보 메뉴의 옵션 설정을 통해 쿠키 저장을 거부 할 수 있습니다.
제9조(개인정보의 안전성 확보조치)연구원은 개인정보보호법 제29조에 따라 개인정보의 안전성 확보를 위해 다음과 같은 조치를 취하고 있습니다.
정보주체는 아래의 기관에 대해 개인정보 침해에 대한 피해구제, 상담 등을 문의하실 수 있습니다.<아래의 기관은 연구원과는 별개의 기관으로서, 연구원의 자체적인 개인정보 불만처리, 피해구제 결과에 만족하지 못하시거나 보다 자세한 도움이 필요하시면 문의하여 주시기 바랍니다>
개인정보 침해신고센터 (한국인터넷진흥원 운영)
개인분쟁조정위원회 홈페이지
대검찰청 사이버범죄수사단
경찰청 사이버안전국
제11조(개인정보 보호책임자)* 개인정보 처리방침 변경
이 개인정보 처리방침 2021. 1. 12부터 적용됩니다. 이전의 개인정보 처리방침은 아래에서 확인하실 수 있습니다.
개인정보처리방침
이메일 무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집프로그램이나 그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며, 이를 위반시 정보통신망업에 의해 형사처벌됨을 유념하시기 바랍니다. ※자세한 사항은 한국과학기술연구원 정보통신팀으로 문의하시기 바랍니다.
소비자안내
최근 일부기업이 우리원의 객관적인 연구용역 결과를 제품 판촉 또는 투자 유치 등에 유리하도록 결과를 임의로 왜곡하거나 우리 원과 공동개발
또는 인증 등으로 과대과장 광고하는 사례들이 발생하고 있습니다.
소비자 여러분들께서는 우리 원 명칭을 이용한 과대과장 광고에 현혹되지 않으시기 바라며,
이러한 광고를 보신 분께서는 아래의 연락처로 신고하여 주시기 바랍니다.
한국과학기술연구원 | |
---|---|
이메일 | boytoy@kist.re.kr |
전화번호 | 02-958-6327 |
Fax | 02-958-6089 |
주소 | 우)136-791 서울 성북구 화랑로 14길 5 |
고객헌장
한국과학기술연구원 고객헌장을 소개합니다. 한국과학기술연구원 고객헌장 우리 한국과학기술연구원은 원천기술의 보급과 국가산업발전을 선도하여 국민이 편안하고, 풍요로운 삶을 누릴 수 있도록 국가와 사회적 소명을 다할 것을 다음과 같이 선언합니다. 하나. 우리는 고객(국가와 국민)의 기대에 부응하는 최상의 R&D 품질을 제공하겠습니다. 하나. 우리는 항상 고객의 소리에 귀를 기울이고 고객의 입장에서 적극반영하겠습니다. 하나. 우리는 고객을 존중하고, 고객감동을 실현하기 위해 열려 있는 소통을 하겠습니다. 하나. 우리는 고객을 소중하게 생각하며, 종합적인 해결책을 제공하겠습니다. 이와 같은 목표를 달성하기 위하여 구체적인 서비스 이행표준을 제정하고, 이를 성실히 준수할 것을 약속드립니다
서비스 이행표준
한국과학기술연구원 서비스이행표준을 소개합니다. 1. 고객을 맞이하는 우리의 자세 가. 전화로 용무를 처리하시고자 하는 경우 전화벨이 울리면 3번 이내에 받고, 받을 때에는"안녕하십니까? 000팀 000입니다."라고 인사를 드리겠습니다. 만약 전화벨이 4번 이상 울려 받는 경우에는"늦게 받아 죄송합니다"라고 인사를 하겠습니다. 전화를 다른 직원에게 연결하여 드릴 경우에는 그 사유와 연결할 직원의 소속부서, 이름, 전화번호를 안내하여 드린 후 바로 연결하여 드리겠습니다. 담당자가 없을 경우에는 전화 요지, 고객의 성함, 연락처 등을 메모하여 담당자에게 전달하고, 담당자는 업무 복귀 후 30분이내에 고객께 연락드리겠습니다. 통화 종료 후에는"감사합니다. 좋은 하루 되세요"라고 인사를 한 다음, 고객이 전화를 끊으신후에 수화기를 내려놓겠습니다. 나. 직접 방문하시는 경우 전 건물 출입구와 승강기 내부에 층별 안내도, 각 사무실 입구에는 직원과 담당업무가 표시된 좌석배치도, 책상 앞에는 명패를 비치하여 방문하시려는 직원을 손쉽게 찾을 수 있도록 하겠습니다. 고객을 맞이할 때는 자신의 이름을 밝히고 친절한 자세와 존중하는 마음으로 임하겠습니다.